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Abstract. A generalised Landau theory for non-equilibrium phase transitions in chemical 
reactions is developed. This theory is based on the construction of a generalised free 
energy which describes just the fluctuations in excess of equilibrium. This is accomplished 
most readily via the Poisson representation. This theory yields results for the spatial 
correlation function in agreement with those of the stochastic master equation. The range 
of validity of the Landau theory and the Gaussian approximation to the master equation 
are found to be equivalent and both are shown to yield satisfactory results for non- 
equilibrium chemical phase transitions. 

For a one-component chemical system, fluctuations in excess of equilibrium require 
only the introduction of a single additional parameter a ‘generalised temperature’. 
However in general, a generalised Landau theory for non-equilibrium phase transitions is 
not so simple, an n-component system requires i n ( n  + 1) additional parameters to 
describe it. 

1. Introduction 

The Landau theory of phase transitions has been of great utility in providing a simple 
theoretical treatment of equilibrium systems, and thus it is of great interest to deter- 
mine whether it can be generalised to non-equilibrium systems as well. Simple 
examples of non-equilibrium phase transitions are provided by chemically reacting 
systems for which Pimpale and Landsberg (1977, to be referred to as PL) have 
conjectured a straightforward generalisation of the Landau theory. The predictions of 
the method are in agreement with those of stochastic master equation methods for 
global fluctuations. However, their method retains the inadequacies of the usual 
Landau theory in describing local fluctuations. In magnetic systems or liquids the 
interest has been in the long-range correlations near an instability point and here the 
Landau theory has been useful In chemical systems however the local fluctuations are 
important. For example in chemical equilibrium there are no long-range correlations 
and the system is completely characterised by the local fluctuations. 

A generalised Landau theory including local fluctuations may be constructed by a 
choice of the generalised free energy which describes only the fluctuations in excess of 
equilibrium. This may be accomplished using the Poisson representation (Chaturvedi 
et a1 1976, Gardiner and Chaturvedi 1977). The generalised Landau theory is then 
shown to be in exact agreement with the results of the stochastic master equation in 
the Gaussian approximation. We also investigate the range of validity of the Landau 
theory for chemical reactions and show that it is the same as that of the Gaussian 
approximation. 
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The problems in extending the generalised Landau theory to systems with more 
than one variable are investigated. 

2. Comparison of the results of Pimpale and Landsberg with the predictions of 
equilibrium statistical mechanics and stochastic master equations 

We considered a simple chemical system with one component, X, which diffuses and 
reacts chemically. The macroscopic equation describing these processes is taken to be 

ax 
at 
- = DV2x + @ ( x )  

where x is the number of molecules of chemical species X, D is the diffusion 
coefficient, and @ ( x )  describes the chemical reaction. For this system PL introduced a 
generalised free energy of the form 

X = f [ /  d r ( H ~ - / ’ @ ( x ) d x + i D ( V x ) ~ ) ]  

Using the standard methods of Landau theory they derive for the spatial correlation 
function 

~ ( r ,  r f ) =  (x(r ) ,  x ( r Y  = (x(r )x(r ’ ) ) - (x(r ) ) (x(r ‘ ) )  (2.3) 
an expression of the form 

kT exp( - Ir - r’l /L) p ( r ,  r ’ )  = - 
4r fD  lr-r’l 

with 

is assumed to be independent of r. T is the thermodynamic temperature and the 
quantity f is left unspecified by PL. 

Spatial correlation functions in chemical reactions have been derived by stochastic 
master equation methods (Gardiner et a1 1975, 1976, Lemarchand and Nicolis 1976, 
van Kampen 1976b) and equivalent methods (e.g. fluctuation dissipation theory, 
Keizer 1977). 

These methods yield a correlation function of the form 

where F((x(r ) ) )  is a function dependent on the reaction @. The first term in equation 
(2 .5 )  describes local fluctuations whereas the second term describes global fluctua- 
tions. The first term is absent in equation (2.4) derived by PL using a generalised 
Landau theory since Landau theory usually uses an approximate form of the free 
energy which cannot include local fluctuations. We show in the appendix how the 
Landau theory can be formulated to include local fluctuations in chemical reactions in 
thermodynamic equilibrium, 

Local fluctuations play an important role in the understanding of chemical reac- 
tions. There are no long-range correlations in equilibrium in chemical reactions in 
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contrast to the situation in magnetic or liquid systems usually treated by the Landau 
theory. In chemical equilibrium F((x(r ) ) )  is zero and the system is completely charac- 
terised by the local Poissonian fluctuations. This prediction is in precise agreement 
with results obtained using the standard methods of equilibrium statistical mechanics 
(in the grand canonical ensemble) (Gardiner and Chaturvedi 1977, van Kampen 
1976a). These equilibrium fluctuations are not given by the PL generalisation of the 
Landau theory. 

In chemical reactions it is only possible to get long-range spatial correlations in 
non-equilibrium steady states. Here the PL generalisation of the Landau theory gives 
the correct form for the long-range correlations. However local fluctuations are also 
of interest in non-equilibrium steady states in chemical reactions. From the master 
equation we may derive an expression for the variance u2(AV) of the number of 
molecules in a small spherical volume AV of radius R << 1,. This yields (Gardiner er a1 
1976) 

The master equation predicts local Poissonian fluctuations (but global non- 
Poissonian) even in non-equilibrium steady states agreeing with the local equilibrium 
postulate of Glansdorff and Prigogine (1971). Again the PL generalised Landau 
theory cannot give these local fluctuations. 

3. C O R S ~ ~ U C ~ ~ O R  of B generalised free energy for chemical reactions 

Despite the preceding objections it is possible to construct a generalised free energy 
which will yield the correct spatial correlation function for both local and global 
fluctuations via the Landau method. The problem lies in including the fluctuations 
due to diffusion and chemical reaction in a correct manner. This problem is closely 
related to that of correctly choosing Langevin forces when introducing fluctuations 
into reaction diffusion equations, which have been carefully discussed by Gardiner 
(1976) and Grossman (1976). The Langevin equation for a one-component reaction 
diffusion system follows from equation (2.1) by the addition of a stochastic Langevin 
force 

dx - = DV2x + @(x) + g(r,  t ) .  
dt 

An appropriate choice for the correlation functions of g(r,  t )  is necessary if the 
predictions of the Langevin equation are to be correct. 

A choice of uncorrelated forces 

(g(r,  t)g(r’,  t ’ ) )  = KS(r -r’)S(t  - t’) (3.2) 
where K is a constant, leads to a spatial correlation function of the form of equation 
(2.4), which, as pointed out in Q 2, leads to incorrect results in thermodynamic 
equilibrium. 

It has been shown (Gardiner 1976, Grossman 1976) that a choice of correlation 
function of the form 

(g(r ,  t)g(r’,  t’)) = ( ~ ~ ( r ,  t)+D2VV’Kd(r, t ) )a(r-r’)S(t-  t’) (3.3) 
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leads to a form of the correlation function given by equation (2.5) (K, and Kd give a 
measure of the strength of the fluctuating forces due to chemical reaction and diffusion 
respectively). That is, the form of the Langevin forces must be spatially correlated to 
give rise to spatially uncorrelated concentration fluctuations in thermodynamic 
equilibrium. 

It is however possible to retain spatially uncorrelated Langevin forces if one works 
in the Poisson representation of the number distribution (Chaturvedi et a1 1976, 
Gardiner and Chaturvedi 1977): 

where we have used the discrete cell description in space where x = x l ,  . , ., xi,  . . ., xn 
and xi  is the number of particles in the ith cell and ai is the associated Poisson 
variable. 

In the continuum notation the Langevin equations may be written in terms of CY 

variables as 

d a  
dt 
-=Dv:+@(a)+ga(r,  t).  (3.5) 

It has been shown (Gardiner and Chaturvedi 1977) that the choice of correlation 
function 

(ga(r,  t)ga(r’, t’)) = K6(r-r‘)6(t-tf) (3.6) 

leads to the correct form of the spatial correlation function given by equation (2.5) and 
is completely equivalent to a master equation formulation. 

Motivated by these considerations we are lead to construct our generalised free 
energy in the a representation as 

N = { dr  ( NO- l a  @(a) d a  +@(Va)2), (3.7) 

We may now follow precisely the method of PL but in CY variables to determine the 
correlation function. The minimum of the generalised free energy gives the macros- 
copic steady state 

@(a)+DV2a =o. (3.8) 
Fluctuations are introduced by assuming that the probability of having the system in 
state a ( r )  is proportional to exp(-H/kr), where r gives a measure of the strength of 
the fluctuations in excess of equilibrium and is analogous to the thermodynamic 
temperature and k is Boltzmann’s constant. The mean of a ( r ) =  (a@)) obeys equa- 
tion (3.8) in the steady state. Taking %(r)  as the cr-independent part of @ ( r )  we may 
deduce from equation (3.8) that 

(3.9) 

The change in (a@)) induced by a small change in @O is given by (Kadanoff et a1 1967) 

(3.10) S(a(r)) = kr  { dr‘(a(r), ar(r’))S@o(r, r’). 
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From equations (3.9) and (3.10) we arrive at the following equation for the spatial 
correlation function: 

When 

is independent of r this has the solution 

(3.11) 

(3.12) 

where I, = ( D / Y ) ’ / ~ .  Now since 

g(r, r ‘ )= (a ( r ) ,  a ( r ’ ) )=p( r ,  r ’ ) - (x(r ) )a(r -r ’ )  (3.13) 

this gives us in the molecular number representation 

k7 exp( - Ir - r’I/l,) 
p (r, r’)  = ( x  ( r  ))S ( r  - r’)  + - 47rD Ir-r’l 

(3.14) 

where 1, = ( D / Y ) ” ~ .  

tic master equation. 
This reproduces the form of the result (equation (2.5))  obtained from the stochas- 

4. A chemical reaction exhibiting a second-order phase transition 

We shall consider as an example of the foregoing technique a chemical reaction which 
is known to exhibit a second-order phase transition (Schlogl 1971, McNeil and Walls 
1974) 

k ,  k 2  

E + X C C  A + X + 2 X  k4 (4.1) 

where A, E and C are held constant, and the ki are the reaction rate constants. The 
homogeneous macroscopic steady state is given by 

k3C + (K2 -K& - k 4 X 2  = 0 (4.2) 
where x is the number of molecules of chemical species X. 

A stochastic master equation including diffusion for this reaction was derived by 
Gardiner et a1 (1976). Because of the non-linearity in the reaction this yields an 
equation for the second-order correlation function which is coupled to higher-order 
correlation functions. In order to truncate this hierarchy of coupled equations an 
approximation assuming the molecular distributions to be Gaussian was made. The 
equation for the spatial correlation function g(r ) ( r  = Ir - r’l) in the steady state 
obtained in the Gaussian approximation is 

(DV2 +K2 -K1 - 2k4(x ) )g ( r )  = - S(r) (K*(x)  - k 4 ( x ) 2 )  (4.3) 
where K1 = klE, K2 = k2A and we have neglected g(O)<< 1. 
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Using the Landau theory described in § 3 we obtain directly from equation (3.11) 

(DV' + K z  -K1 - 2k4(x))g(r) = --S(r)kT. (4.4) 

Comparing equations (4.2) and (4.3) there is a one-to-one correspondence with the 
identification 

k7 = ( K ~ ( x ) -  k4(Xj2)= (K l (x ) -k3C)  (4.5) 

with this value of k7 the result (3.14) for the correlation function is identical to that 
given by the master equation in the Gaussian approximation. 

The steady-state distribution in a space is characterised by a 'generalised 
temperature' T 

The 7 parameter gives a measure of the fluctuations in excess of equilibrium fluctua- 
tions. 7 is zero when the system is in equilibrium. 

This we can see from the above example where equilibrium occurs when the 
separate reactions balance independently which means 

K ~ x  = k3C k2x = k4x2 (4.7) 

which are equivalent to the vanishing of 7 according to equation (4.4). In the case that 
7 = 0 we see that equation (4.6) predicts f ( a )  is zero unless H ( a )  vanishes as is indeed 
found in the Poisson representation where in equilibrium 

f(a)= S(a - a e q )  (4.8) 

corresponding to a Poisson distribution in the molecular number 

(4.9) (a=,)" P(x)  = exp( - aeg) -. 
X !  

This leads us to the following construction for a non-equilibrium distribution function: 

ax  
P(x)=  5 d a  e x p ( - a ) l e x p  

X .  
(4.10) 

Thus for a one-component system the non-equilibrium distribution function may be 
simply constructed requiring only one additional parameter, a generalised tempera- 
ture 7. 

5. Limits of validity of the Landau theory and the Gaussian approximation for 
chemical reactions 

To test if the Landau theory is valid for chemical reactions we shall use the Ginsburg 
criterion (see Kadanoff et a1 1967). For the Landau theory to be valid fluctuations in 
the order parameter over distances comparable with the coherence length must be 
relatively small. In particular they must be small in comparison with the order 
parameter itself. In chemical reactions, the chemical concentration in the Poisson 
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representation plays the role of the order parameter and the criterion may be written 
as 

((U ( f ) ,  (U (f’Nllr-r~l-*c << (a (rN2* (5.1) 

For the chemical reaction considered in § 4 this yields 

K l ( 0 ) < <  (a)’. 
1, 

Re-arranging we require the inequality 

where 

That is, as long as the distance from the critical point K1 = K2 is much greater than 
I N L / I L  the Landau theory is valid. On the right-hand side we have the ratio of two 
lengths, lL pertains to the linear reaction and gives a measure of the distance over 
which the molecule diffuses before undergoing a spontaneous decay, INL pertains to 
the non-linear reaction, As long as 1NL is small the Landau theory should be valid for 
systems not too close to the critical point. 

Higher-order corrections to the Gaussian approximation to the master equation 
have been calculated by Gardiner and Chaturvedi (1977). They find that the Gaussian 
approximation is valid under exactly the same condition (5.3). Taken with the result 
of 0 4 this leads us to conclude that our generalised Landau theory and the Gaussian 
approximation to the master equation are equivalent. 

An order of magnitude estimate of lL and 1NL may be given for gaseous reactions: 

D CC uth,,,[(molecular radius)’ X number density]-’ - 0.1 cm2 s-* 

k4CC quth,,,(molecular radius)’- q x lo-” molecules-’ s-l cm3 

where q is the quantum efficiency of the reaction 

K’ - 1013 molecules s-’ 

INL = k4/D - q X lo-’’ cm 

lL = (D/K1)”2 - lo-’ cm. 
Therefore 

k q x l 0  -3 . 
1L 

Because of the extremely small value normally assumed by lNL we conclude that the 
Landau theory should be valid for chemical reactions. This is in keeping with the 
results obtained for non-equilibrium phase transitions in other systems, e.g. the laser 
and hydrodynamic instabilities. In non-equilibrium systems only a finite number of 
degrees of freedom is crucial and a mean field theory such as the master equation in 
the Gaussian approximation or the Landau theory has so far proved adequate for 
singularities (Martin 1976). 
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6. Generalisation to multicomponent systems 

It has been shown (Gardiner and Chaturvedi 1977) that a general chemical system 
may be described by a multivariate Fokker-Planck equation in the Poisson represen- 
tation, and the multivariate distribution function be written 

Here, the index a has a two-fold significance: more precisely we should write xai 
where a refers to the chemical species and i refers to the label of a cell in a spatially 
extended system; but for simplicity we shall combine both of these into the single 
index a, except when we wish to talk explicitly about the spatial dependence. 

The Fokker-Planck equation can be written (we use a repeated index summation 
convention) 

In order to relate this to a generalised Landau theory we linearise equation (6.2) as 
follows. Defining 

(6.3) 
ss Sa,=a,-a, 

we assume J a ( { a } )  = J a b S a b  and BQb is independent of a. Under these assumptions by 
following the methods of Lax (1960, see 0 5 )  a Gaussian solution of equation (6.2) can 
be derived of the form 

(6.4) 

JabUbc U a d c b  = B a c  (6.5) 

u b c  = ( a b ,  a c >  (6.6) 

JU + u ~ T  = B. (6.7) 

( D V 2 + J ) u ( r - r ' ) + u ( r - r ' ) ( D ~ 2 + J T ) = B S ( r - r ' ) .  (6.8) 

1 -1  f({a}) = eXp( - ?(Tab &&'b)ldet Ul-1/2(27r)-"/2 

where 

and is the correlation function 

or in a matrix notation 

For an explicit spatial dependence the equations become 

Now in a one-variable situation the matrices become one dimensional, so we may 
simplify equation (6.8) to the form 

(DV' + j>o(r - r')  = W ( r  - r')  (6.9) 

which is of the form of equation (4.2). 
In the multidimensional situation however, the appropriate equation (6.8) cannot 

easily arise as the result of procedures developed in 0 3. In fact, all that the Landau 
procedure amounts to is to say that for a one-variable space-dependent situation, the 
correlation function is proportional to (DV2 +j)-' and the only correct multivariate 
analogue of this is obtained by solving equation (6.8). 



A generalised Landau theory for chemical instabilities 169 

The equation (6.8) gives a non-equilibrium distribution which is characterised by 
the linearised time development operator, DV2 + J, and by the noise matrix B, so that 
if there are n chemical species, there are $n(n + 1) different noise parameters or 
generalised temperatures. The equilibrium state is characterised by B = 0 and f({a}) 
becomes a multivariate delta function. Thus deviation from equilibrium is measured 
by a generalised temperature matrix kT=B. One sees that in general the non- 
equilibrium situation is much more complicated than the equilibrium situation. 

7. Conclusions 

A generalised Landau theory for chemical instabilities has been formulated. Our 
theory modifies the generalised free energy chosen by Pimpale and Landsberg to one 
which just describes the fluctuations in excess of equilibrium. This is most easily 
accomplished in the Poisson representation. The results for the spatial correlation 
function predicted by this generalised Landau theory are shown to be in exact 
agreement with the predictions of the stochastic master equation in the Gaussian 
approximation. The range of validity of the generalised Landau theory and the 
Gaussian approximation to the master equation are found to be the same. Both are 
expected to be valid for non-equilibrium phase transitions in chemical reactions. In 
equilibrium the fluctuations in chemical reactions are Poissonian. For a one- 
component chemical system the additional fluctuations may be described by the 
introduction of one additional parameter: a ‘generalised temperature’. 

However in general the extension to non-equilibrium systems is not so simple. A 
system with n components would require an(n + 1) additional parameters to describe 
non-equilibrium fluctuations. Thus while in the special case of a one-component 
system non-equilibrium transitions may be treated by a simple generalisation of 
equilibrium techniques, in general non-equilibrium systems are considerably more 
complicated and though a procedure is clear its application except in special cases 
would appear to be limited. 
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Appendix. The Landau theory for chemical reactions in equilibrium 

The Landau theory for chemical equilibrium provides a useful illustration of the effect 
of using a correct free energy. From equilibrium statistical mechanics, it may be 
shown that the distribution function is Foissonian. More precisely, if the system is 
divided into cells, labelled by an index i, and the number of molecules of component A 
in cell i is x n ( i ) ,  the ideal solution limit gives the form 
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This result has been demonstrated by Gardiner and Chaturvedi (1977), and van 
Kampen (1976a)t. The quantities (x,)  are the mean numbers in the cells in equili- 
brium, and are the steady-state solutions of the reaction diffusion equations 

However the free energy which corresponds to the distribution (2.8) is given by$ 

and using Stirling's approximation, we find 

If we take xa(i)  to be a small deviation from equilibrium, and use a continuum 
notation, so that 

xa(r)=(xa)+&z(r) (A.5) 
we find 

Thus, even though the system diffuses, there is no gradient dependent term in the free 
energy. The free energy is strictly local. The free energy (A.4) is of course also the 
exact form usually assumed in ideal solution theory. 

If we apply the usual Landau procedure to the free energy (A.4) or (A.6) we find 
that minimising it gives the macroscopic equation 

which is not the same equation as obtained by taking the steady-state form of the 
reaction diffusion equation. If we now carry out the Landau procedure to calculate 
the correlation function, using the free energy (A.4) we obtain 

( x a ( r ) ,  & ( T I ) )  = a a b ( x a ) a ( r - r ' )  ('4.8) 
as required. From this we draw the following conclusions. 

(i) The reaction diffusion equations themselves give no information about the free 
energy function, other than through their steady-state solutions (x,) .  Thus, an attempt 
to generalise the Landau procedure on the basis that the reaction diffusion equations 
are known is unjustified. 

(ii) The Landau procedure can give a description of local fluctuations, in the case 
where there are no long-range correlations. The failure of the usual Landau pro- 
cedure at short range arises from the approximate form of the free energy, in which a 

't The canonical ensemble result is obtained by multiplying by delta functions of the stoichiometric 
constraints. Since the number of these is of the same order of magnitude as the number of components, in 
the limit of a macroscopic system these constraints can be ignored, a result demonstrated more rigorously by 
Gardiner and Chaturvedi (1977). Thus, we need only consider the grand canonical ensemble. 
t A thorough investigation of the basis for this free energy is carried out in Gardiner (1977). 
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(Vx(r))’ term is added, an exact form of free energy would have higher-order terms, 
and a local part of the correlation function would be predicted. This term takes care 
of correlations, but is not the only part of the free energy which enforces homogeneity. 
If the local part of the free energy has a minimum, this will also enforce homogeneity. 

(iii) In cases where the Landau theory is normally used (ferromagnets, ferro- 
electrics, liquid-gas) the (Vx(r) )2  term is a surface energy term, which can be seen to 
arise from the forces involved. For chemical reactions, the free energy (in ideal 
solution theory) arises entirely from entropy. Diffusion is itself an entropy effect, not 
an energy effect, and has no (Vx(r) )2  term in the corresponding free energy. 
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